Begitupun dengan cotangen, bisa dinyatakan sebagai perbandingan cosinus dan sinus. Perbandingan Trigonometri yang Saling Berkebalikan. Berikut merupakan perbandingan trigonometri yang saling berkebalikan. Pembuktiannya silakan sebagai latihan. Contoh Soal Diketahui segitiga siku-siku ABC, jika tan A=3/4 (A sudut lancip) maka cos A= Jawabanpaling sesuai dengan pertanyaan Diketahui cos(x-y)=4//5 dan sin x*sin y=3//10. Nilai cotan Diketahuicos x = 3/5 dan sin y = 1/3, x sudut tumpul dan y sudut lancip tentukan nilai: Back to questions feed. Link was copied to clipboard https: Diketahui cos x = 3/5 dan sin y = 1/3, x sudut tumpul dan y sudut lancip tentukan nilai: 7 months ago. Answer 254 CHAPTER 13 CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14) Use a computer algebra system to plot the projections onto the xy- and xz-planes of the curve r(t) = t cost,tsin t,t in Exercise 17. In Exercises 19 and 20, let r(t) = sin t,cost,sin t cos2t as shown in Figure 12. y x z FIGURE 12 19. Find the points where r(t PengertianFungsi Komposisi. Fungsi komposisi yaitu penggabungan operasi pada dua jenis fungsi f (x) dan g (x) hingga menghasilkan fungsi baru. Operasi fungsi komposisi biasa yaitu dilambangkan dengan "o" dan dibaca dengan komposisi atau bundaran. Fungsi tunggal itu merupakan fungsi yang bisa dilambangkan dengan huruf "f o g" ataupun contoh gambar struktur organisasi kelas yang kreatif dari karton. Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih Sinus, Cosinus, TangentRumus Jumlah dan Selisih Sinus, Cosinus, TangentPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0306Nilai tan 75 adalah ....0055Nilai dari sin 315 adalah0245Jika 2 sin a cos b=sina+b+sina-b ...... 1 2 cos a s...0226Nilai dari -12sin165cos75 adalah . . . .Teks videoini merupakan soal tentang trigonometri disini kita diketahui nilai Sin X dan cos Y yang ditanyakan ada cos X min y ini adalah rumus Cos X min y Jadi kita harus mencari dulu nilai cos X dan Sin di sini tak anggap sudut X Sin x adalah depan per miring jadi depannya 3 miringnya 5 depan adalah depan sudut jadi di sini depan nilainya 3 miring depannya siku-siku ini miring nilainya 5 kita cari nilai samping dengan memakai phytagoras miringnya 5dikurang 3 kuadrat 25 dikurang 9 akar 16 jadi sampingnya ada lalu kita cari nilai cos x cos x adalah samping per miring jadi nilainya sama dengan 4 karena di sini kayaknya sudut tumpul nilai cos pada sudut tumpul adalah negatif maka nilai cos x nya adalah Min 4 per 5 kita cari nilai sini ini saya anggap sudut y ini depan karena sudut ini miring depan siku-siku ini samping yang diketahui adalah kos kos Je samping termiring jadisampingnya adalah 12 miringnya 13 saya cari dulu depannya miringnya 13 kuadrat dikurangi sampingnya 12 kuadrat 169 dikurangi 144 hasilnya akar 25 = 5 lalu kita cari ini tingginya depannya miringnya 13 karena y sudut lancip kuadran 1 maka semuanya positif termasuk sini lalu saya masukkan cos X min 4 per 5 yang ini lalu cos Y 1213 + Sin x adalah 3 per 5 kali tingginya 5 per 13 ini bisa kita coret Maaf lebih baik tidak dicoret karena penyebutnya adalah 65 pada bidan gandanya Min 48 per 65 + 15 per 65 hasilnya adalah Min 33 per 65 ini jawabannya jadi pilihan ganda nya adalah yang B sampai jumpa soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih Sinus, Cosinus, TangentRumus Jumlah dan Selisih Sinus, Cosinus, TangentPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0306Nilai tan 75 adalah ....0055Nilai dari sin 315 adalah0245Jika 2 sin a cos b=sina+b+sina-b ...... 1 2 cos a s...0226Nilai dari -12sin165cos75 adalah . . . .Teks videoSelamat datang pada soal kali ini kita akan menggunakan rumus penjumlahan dua sudut dari fungsi trigonometri tangen rumus tersebut berbunyi Tan X + Y X + Y adalah penjumlahan dua sudut ya itu = Tan X + Tan y dibagi 1 dikurangi Tan X dikali Tan y Oke ini adalah rumus yang akan kita pakai untuk mengerjakan soal di samping ini sebelum itu kita harus lihat info lain dari soal di soal dituliskan Sin x = 3 per 5 dengan sudut X itu tumpul Oke jika sudut itu tumpul ya jika tumpul maka dengan kata lain X ada di kuadran 2 Di mana itu mengakibatkan nilai dari cos itu bernilai negatif dan Tan itu juga bernilai negatif karena berada di kuadran 2 maka dari itu selanjutnya akan kita cari nilai dari tangen di sini kita punya Sin x = 3 per 5 dan Sin X itu sama dengan depan per miring Ok jika kita ingin mencari nilai tangen kita bisa menggambar segitiga yang dulu oke di sini adalah segitiga dan di sini adalah sudut X maka depannya itu bernilai 3 dan miringnya bernilai 5 sedangkan Tan itu sama dengan depan persamaan kata hutan = b. + a maka bisa dicari samping kuadrat itu sama dengan miring kuadrat dikurangi Dengan depan kuadrat ya. Oke miring kuadratnya kita punya 5 kuadrat 25 dikurangi 8 kuadrat 3 kuadrat ya 9 maka kita punya sampingnya itu adalah akar dari 16 atau jawabannya 4 maka dari itu kita punya di sini Tan dari X itu sama dengan depan samping atau jawabannya adalah 3/4 tapi jangan lupa di sini x-nya sudutnya tumpul maka ada di kuadran 2 di mana Tan itu bernilai negatif Oke selanjutnya untuk nilai dari Tan y kita cari di halaman berikutnya. Oke langsung saja kita nyari nilai tangen Y nya ya Kangen ye itu kita bisa cari dari cos y itu kan = 12/13 di mana ya itu lancip Lancip Berarti ada di kuadran 1 karena di kuadran 1 sin cos dan Tan semuanya positif langsung saja kita buat segitiganya ini segitiga nya di sini nilai y sampingnya itu 12 dan miringnya 13 karena Tan itu di samping kita butuh depan kita cari depan kuadrat itu sama dengan miring kuadrat dikurangi dengan samping kuadrat. Oke berarti kita punya miring kuadratnya itu adalah 169 dikurang 12 kuadrat itu 144 ya langsung kita tulis 144 di sini berarti depannya itu akar dari 25 Oke maka depannya 5 maka dari itu kita punya tan y itu bernilai depan per samping atau 5/12 di sini sudutnya Lancip Berarti ada di kuadran 1 di mana semua nilai sinus cosinus dan tangen itu positif tertulis di sini ya Tadinya itu = 5 per 12 Maka langsung saja kita masukkan Tan x + y itu = Tan X + Tan y dibagi dengan 1 Min Tan X dikali Tan y dan x nya itu adalah min 3 per 4 + 5 per 12 Tan y ya dibagi dengan 1 dikurangi Min 3/4 Oke dikali dengan 5 per 12 sama dengan Ini hasilnya adalah min 1 per 3 dibagi dengan 2 1/16 atau hasil akhirnya adalah 16 per 63 itu sesuai dengan option abjad yang B Oke sampai di sini sampai jumpa di video berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul terjawab • terverifikasi oleh ahli Pengguna Brainly Pengguna Brainly TriGonoMetRisin x = 3/5tan y = 1/7x dan y , lancipBukti x + y = 1/4 π = 45°tan x + y = 1tan x + tan y/1 - tan x tan y = 3/4 + 1/7 / 1 - 3/4 . 1/7= 25/28 / 25/28= 1TerBukTi siku2 dg sisi 3 , 4 dan 5 . atau ribetnya dicari satu" , cos x = √1 - sin² x = 4/5 . tan x = sin x /cos x = 3/5 /4/5 = 3/4. Kl sering latihan, pasti hafal 345, 6810, dst 3/4 nya dari mana ya kak? Dalam soal diketahui kalau Sin A = 3/5. Nah, inilah patokan yang akan kita gunakan untuk mencari nilai-nilai lain yang ditanyakan. Cara menjawabnya mudah sekali lho.. Tapi sebelumnya mari kita lihat lagi soalnya.. Contoh soal 1. Jika diketahui sin A = 3/5, berapakah nilai dari cos A, tan A, sec A, cosec A dan cotan A? Mari kita bahas soalnya.. Analisa soal Soal seperti ini bisa dikerjakan dengan mudah dengan menggunakan bantuan dari sebuah segitiga siku-siku. Coba kita lihat bentuk segitiganya.. Perhatikan sudut A. garis di depan sudut A kita sebut "depan" garis di depan sudut siku-siku selalu menjadi sisi miring atau disebut "miring" saja garis yang satu lagi, yaitu garis yang mengapit sudut A disebut dengan "samping" Sekarang perhatikan rumus-rumus berikut. Tunggu dulu.. Sebelum mengerjakan soal ini, sisi sebelah "samping" belum diketahui. Jadi harus dicari dulu ya!! Untuk mendapatkan sisi samping, gunakan rumus phitagoras saja.. miring² = depan² + samping² miring = 5 depan = 3 5² = 3² + samping² 25 = 9 + samping² 25 - 9 = samping² 16 = samping² samping = √16 samping = 4. Ok, semua sisi sudah diketahui.. Sekarang saatnya untuk mencari nilai-nilai yang lain.. Cos A = samping/miring Cos A = 4/5 Tan A = depan/samping Tan A = 3/4 Giliran mencari secan, cosecan dan cotangen. Cosec A Cosec A = 1/Sin A = 1 Sin A Cosec A = 1 3/5 Cosec A = 1 x 5/3 Cosec A = 5/3 Sec A Sec A = 1/Cos A = 1 Cos A Sec A = 1 4/5 Sec A = 1 x 5/4 Cotan A Cotan A = 1/Tan A = 1 Tan A Cotan A = 1 3/4 Cotan A = 1 x 4/3 Cotan A = 4/3 Nah, semua nilai yang ditanyakan sudah dijawab.. Semoga terbantu ya..Baca juga ya Nilai Dari sin 80 - sin 20 - cos 50...?Sin x + Cos x = 1/3. Nilai dari sin x = ...Jika A + B + C = 180, buktikan = Sin2A + Sin2B + Sin2C Trigonometry Examples Step 1Take the inverse sine of both sides of the equation to extract from inside the 3The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second 5Step period of the function can be calculated using .Step with in the formula for absolute value is the distance between a number and zero. The distance between and is .Step 6The period of the function is so values will repeat every radians in both directions., for any integer

diketahui sin x 3 5